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Abstract 
The use of relational databases that are composed of the frequency of n-gram in a given corpus 
allows users to quickly and easily examine word frequency. Perhaps the first large corpus to use such 
an approach was the 100 million word Corpus del Español, which was created in 2002 
(www.corpusdelespanol.org/).  This was followed by two BNC-based 100 million word corpora that 
were modelled on the same architecture: Phrases in English (pie.usna.edu) and Variation in English 
Words and Phrases (VIEW; view.byu.edu), as well as a 40 million word Corpus of Historical English 
(view.byu.edu/che) 
 
The relational database/n-grams architecture allows simple word frequency queries such as the 
following (all of which can be carried out on a 100 million word corpus in 1-2 seconds): 
 
• Overall frequency of a given word, set of words, phrase, or substring in the corpus 
• ‘Slot-based’ queries; e.g. the most common nouns one ‘slot’ after mysterious, or z-score ranked 

words immediately preceding chair 
• Wide-range collocates; e.g. the most common nouns within a ten word window (left or right) of 

string or broken 
 
In addition, however, the architecture that we have used for VIEW and the Corpus of Historical 
English allows several other types of queries that cannot be carried out directly with competing 
architectures (e.g. SARA/XARA, the IMS Corpus Workbench, or the Phrases in English architecture), 
including the following: 
 
• Comparison of frequency with related words; e.g. nouns occurring immediately after utter but not 

after complete or sheer, or adjectives within ten words of woman but not man  
• One simple query to find the frequency of words in separate databases, such as user-defined, 

customized lists (clothing, emotions, technology terms, etc) or synsets from WordNet 
• Register variation; e.g. all verbs or all words ending in *ble or all three-word lexical bundles that 

are more common in academic texts than in fiction, or in legal or medical texts 
• Historical variation; e.g. words, phrases, or collocates of a given word or part of speech, which are 

more common in the 1900s than in the 1800s 
 
Finally, even within the relational database/n-grams approach, there are competing architectures that 
favour certain types of queries over others, and we will briefly consider some of these issues. 
 



Introduction 
Since the advent of ‘mega-corpora’ that are 100 million words in size or larger, there have 
been challenges in terms of economically extracting large amounts of data.  For example, 
several years ago it was sufficient to create a query engine that would perform a linear scan 
of the text, and such an architecture might return the results from a one million word corpus 
in 1-2 seconds.  Using that same architecture, however, a similar query on a 100 million word 
corpus might take 100-200 seconds.  As a result of these performance issues, in the last 10-
15 years a number of alternate architectures have been developed.  These include the use of 
large numbers of indices that contain offset values for each word in the corpus and the use of 
large hash operations to find nearby words (e.g. SARA/XAIRA: Burnage and Dunlop 1993, 
Burnard 2000) and the relational database architecture of the IMS Corpus Workbench (Christ 
1994). 
 During the past five years, we have employed a modified relational database 
architecture for a number of corpora that we have created.  In contrast to the IMS Corpus 
Workbench approach, however, these corpora rely heavily on an ‘n-gram’ architecture, which 
will be one of the major topics of this paper.  These corpora include the 100 million word 
Corpus del Espanol (www.corpusdelespanol.org) and a new architecture and interface for 
the 100 million word British National Corpus (view.byu.edu), both of which will be discussed 
herein.  
 As with some other competing architectures, this relational database/n-gram approach 
allows queries like the following: 
 
• the overall frequency of a given word or phrase in the corpus (mysterious, blue skies) 
• the frequency words with a given substring (*able, *heart*, etc) 
• queries involving part of speech or lemma (e.g. utter NN1, as ADJ as, ADV VVD ‘barely 
realized’) 
 
Unlike some other architectures, however, our approach is quite fast.  Any of the preceding 
queries on a 100 million word corpus would take less than one second. 
 In addition, as we will see, our approach allows a number of types of query that would 
be difficult or impossible to carry out directly in one step with competing architectures.  These 
include – but certainly are not limited to – the following: 
 
• Comparison of frequency with related words; e.g. nouns occurring immediately after utter 
but not after complete or sheer, or adjectives within ten words of woman but not man  
• One simple query to find the frequency of words in separate databases, such as user-
defined, customized lists (clothing, emotions, technology terms, etc.) or synsets from 
WordNet 
• Register variation; e.g. all words ending in *icity, or all verbs, or all three-word lexical 
bundles, which are more common in academic texts than in works of fiction, or in legal or 
medical texts 
• Historical variation; e.g. all words, phrases, or collocates of a given word or part of speech, 
which are more common in the 1900s than in the 1800s  
  
In the discussion that follows, we will first present the basic architecture (relational databases 
and n-grams) and provide concrete examples of some of the types of queries that this 
architecture allows.  We will then discuss shortcomings of this architecture, and consider how 
these issues have been handled in some of the newer interfaces that we have created, such 
as the VIEW interface for the BNC (http://view.byu.edu).   
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A simple n-gram architecture 
Let us first consider the ’first-generation‘ approach to relational databases and n-grams, which was 
used for the Corpus del Espanol (http://www.corpusdelespanol.org) that we created in 2001-02 (see 
Davies 2005a, 2005b), and the subsequent BNC-based ’Phrases in English‘ database and interface 
that was based on the same architecture and which was created by William Fletcher in 2003 
(http://pie.usna.edu). 
 In this approach, one uses a program to create the n-grams of a given corpus, such as the 
WordList module of WordSmith (Scott 2004) or the KFN-gram program 
(http://miniappolis.com/KWiCFinder/kfNgramHelp.html).  For example, with WordSmith, one would 
simply create separate lists of all of the 1-grams, 2-grams, 3-grams, etc. in the corpus, and then 
import these into a relational database.  In the case of 3-grams for the BNC, for example, a small 
section of the 3-grams table would look like the following: 
 
Table 1. Example of 3-grams where lem1 = ‘break’ and word2 = ‘the’ 

FREQ WORD1 WORD2 WORD# 

106 breaking  the  law  

98 break  the  law  

56 broke  the  silence 

53 break  the  news  

46 broke  the  news  

40 break  the  deadlock  

24 broken  the  law 

23 break  the  habit  

 
Each unique three-word string in the corpus appears in the database, with its associated frequency.  
For example, in the BNC breaking the law occurs 106 times, broke the law occurs 56 times, and so 
on. 
 It is also possible to create frequency tables that include POS (part of speech) and 
lemmatization information as well.  In this case, the table might look like the following: 
 
Table 2. Example of 3-grams where LEM1 = ‘break’ and WORD2 = ‘the’ 
FREQ WORD1 LEM1 POS1 W2 LEM2 POS2 W3 LEM3 POS3 

106 breaking  break VVG the  the AT0 law  law  NN1 

98 break  break VVI the  the AT0 law  law  NN1 

56 broke  break VVD the  the AT0 silence silence NN1 

53 break  break VVI the  the AT0 news  news  NN1 

46 broke  break VVD the  the AT0 news  news  NN1 

40 break  break VVI the  the AT0 deadlock  deadlock  NN1 

24 broken  break VVN the  the AT0 law law NN1 

23 break  break VVI the  the AT0 habit  habit  NN1 

 
With these n-gram/frequency tables, it is a relatively simple process to use SQL queries to 

extract the desired data.  For example, to extract the 100 most common singular nouns (NN1) in the 
BNC, the SQL query would be the following: 
 

(1) 
SELECT TOP 100 * FROM [TABLE_NAME] WHERE 
POS1 = ‘NN1’ 
ORDER BY FREQ DESC 
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To select the 100 most common three-word strings where the first word is a form of break, the second 
word is a or the, and the third word is a noun, the SQL query would be the following, and the results 
would be those seen in Table 2 above: 
 

(2) 
SELECT TOP 100 * FROM [TABLE_NAME] WHERE 
LEM1 = ‘BREAK’ AND 
WORD2 = ‘THE’ AND 
POS3 LIKE ‘NN%’ 
ORDER BY FREQ DESC 

 
Either of these two queries would take less than half a second to retrieve the 100 most frequent 
matching words or strings from the 100 million word corpus. This is the approach used in our Corpus 
del Espanol and in the Phrases in English interface, and it represents an early approach to the use of 
n-grams.   
 
Accounting for register or historical variation 
There is a serious problem, however, associated with a strict n-gram architecture.  Once the 
frequencies are calculated for each unique n-gram in the corpus, one then loses all contextual 
information for that n-gram – in other words, in which part of the corpus each of these n-grams occur.  
For example, Table 2 above shows that breaking the law occurs 106 times in the corpus, but at this 
point we have no idea how many of these are in the SPOKEN texts, or FICTION, or NEWSPAPERS.  
Therefore, using this approach it would probably be impossible to find the most frequent words or 
phrases in a given register, or to compare the frequency of words or phrases in two competing (sets 
of) registers. 

There is a way around the lack of context for each n-gram, however.  One could calculate the 
overall n-gram frequency for a set of different registers (as in Table 2), and then create n-gram 
frequency tables for each register individually.  One would then ‘merge’ the information from the 
‘register’ tables into the overall frequency table, which would contain separate columns (for each n-
gram) showing the frequency in each register.  In other words, the resulting table might look like the 
following 
 
Table 3. Example of 3-grams where LEM1 = ‘break’ and WORD2 = ‘the’ 
WORD1 LEM1 POS1 … W3 LEM3 POS3 REG1 REG2 REG3 
breaking break VVG … law law NN1 x1 y1 z1 
break break VVI … law law NN1 x2 y2 z2 
broke break VVD … silence silence NN1 x3 y3 z3 
break break VVI … news news NN1 x4 y4 z4 
broke break VVD … news news NN1 x5 y5 z5 
break break VVI … deadlock deadlock NN1 x6 y6 z6 
broken break VVN … law law NN1 x7 y7 z7 
break break VVI … habit habit NN1 x8 y8 z8 

 
This is in fact the approach taken in the construction of the 100 million word Corpus del Espanol.  For 
each n-gram, there are columns that show the frequency of the string in each century from the 1200s 
to the 1900s (x12-x19 below).  There are also separate columns containing the frequency of the n-
gram in each of the three registers SPOKEN, FICTION, and NON-FICTION in the 1900s.  The 
following is a small section of bi-grams table, containing a few of the n-grams that match the query 
NOUN + lemma DURO ‘hard N’: 
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Table 4. ‘Hard N’ (N duro) in the Corpus del Español, by century 
WORD1 WORD2 x12 … x17 x18 x19 x19SP x19FIC x19NF 

MANO DURA 0 … 0 10 22 6 9 7 

LÍNEA DURA 0 … 0 0 12 0 3 9 

SER DURO 0 … 1 9 10 7 1 2 

CUELLO DURO 1 … 0 0 10 9 1 0 

MADERA DURA 0 … 0 5 10 7 0 3 

CARA DURA 0 … 0 3 10 6 4 0 
 

The advantage of using such an approach should be readily apparent. Because each n-gram 
has the associated frequency in each of the different historical periods and the different registers, this 
frequency information can be accessed directly as part of the query.  For example, in the case of the 
Corpus del Espanol, we can find which nouns occur with duro ‘hard’ in the 1900s, but not in the 
1800s.  The SQL query would look something like the following (simplified here from how it would 
appear in the actual database): 
 
 (3) 

SELECT TOP 100 * FROM [TABLE_NAME] WHERE 
 POS1 = ‘NOUN’ AND 
 LEM2 = ‘DURO’ AND 
 X19 <> 0 AND 
 X18 = 0 
 ORDER BY X19 DESC 
 
This gives us results like línea dura ‘hard line’, disco duro ‘hard drive’, and años duros ‘hard years’, 
etc. 

In spite of the advantages of this approach, one problem is that it is quite costly to run the  
SQL UPDATE commands that copy the frequency information (for tens of millions of n-grams) from 
each of the separate tables (1200s, 1500s, 1900s-FIC, etc) into the main n-gram tables.  In addition, 
this approach may only be practical when there are a limited number of frequency columns, such as 
the eleven columns in the Corpus del Espanol (1200s-1900s, and three additional registers for the 
1900s).  In the case of the BNC, on the other hand, there are nearly 70 different registers, according 
to the categorization made by David Lee (see 
http://opinion.nucba.ac.jp/~davidlee/devotedtocorpora/home/BNC_WORLD_INDEX.ZIP). 
 In summary, the frequency information from each sub-corpus can be quite valuable, in terms 
of being able to compare between different historical periods, different registers, and so on.  
However, because of the difficulty in creating such tables, they are not used in some other competing 
architectures and interfaces. As a result, with these approaches, it is only possible to look at word and 
phrase frequency across the entire corpus. 
 
The issue of size 
In addition to the problem of ‘granularity’ in terms of frequency in sub-registers, another problem with 
a strict n-gram approach has to do with the size of the tables.  While there are only about 800,000 
rows in the [1-grams] table of the BNC (i.e. 800,000+ unique types in the corpus), this increases to 
about 11 million unique [2-grams] and 40 million unique [3-grams], and it would move towards 90-95 
million unique 7-grams for the 100 million words.   
 The problem with this approach, then, is that the n-gram tables become quite unmanageable in 
terms of size.  Even with efficient clustered indexes on the tables, it may take 10-15 seconds to return 
the results from a particularly difficult query, such as the most frequent n-grams for [ the NN1 that ].  
The second problem is that once we add up all of the different n-gram tables (1-grams + 2-grams + 3-
grams, etc), we soon find that the total number of rows in these tables is larger than the total number 
of words in the corpus, especially if we include the 4-grams through 7-grams. 
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 As a result of the size issue, the approach taken in the construction of the Phrases in English 
database and interface (http://pie.usna.edu) is to include just those n-grams that occur three times or 
more.  By eliminating from the tables all n-grams that occur just one or two times, the size of the 
tables is reduced dramatically – by 75% in the case of the 3-grams, and even more for 4-grams 
through 7-grams.  Therefore there is a large performance gain by eliminating all n-grams that occur 
just once or twice.  Unfortunately, with this approach, one also completely loses the ability to analyze 
these less-common strings.  If one is interested in only the highly-frequent n-grams, this is probably 
not much of problem.  But for detailed comparison of sub-corpora, or to see which phrases are 
entering into or leaving the language, it is problematic to exclude 75% or more of all n-gram types.   

As we have seen, there are two basic problems with a strict n-gram approach.  First, in terms 
of sub-corpora, we either have to ignore the context in which each n-gram appears (register, historical 
period, etc), or else we have to create tables that are quite difficult to construct, by merging in the 
frequency for each sub-corpus into a column in the main n-gram table.  Second, in terms of size and 
speed, we either create tables that eliminate n-grams that occur just one or two times (and thus lose 
75% or more of all unique n-grams), or we have a number of separate n-gram tables (2-grams, 5-
grams, etc) whose combined size in terms of rows is probably much larger than the total number of 
words in the corpus. 
 
An alternate architecture – all sequential n-grams 
There is a ‘second-generation’ approach, however, that avoids both of the problems with a strict n-
gram approach.  In this architecture, we create one single database table that has as many rows as 
the total number of words in the corpus.  Each row contains a sequential word in the corpus (along 
with part of speech and other information, if desired). Most likely, these sequential words will be one 
of the central columns of the table.  This column is then surrounded on the left and right by a number 
of ‘contextual’ columns, to create a ‘context window’ for each word in the corpus.   

For example, the following table represents the main table in our BNC/VIEW database 
(http://view.byu.edu).  This table contains about 100 million rows (one for each sequential word in the 
BNC), with each word in corpus (column word4) surrounded by three words to the left (word1-word3) 
and three words to the right (word5-word7), as well as the ‘word offset’ ID and the text from which the 
n-gram is taken (for the sake of brevity, only word3-word5 are shown here): 
 
Table 5. Sequential n-gram ‘tokens’ 
ID text … word3 pos3 word4 pos4 word5 pos5 … 

50891887 EAA … a  AT0 small  AJ0 group  NN1 … 

50891888 EAA … small  AJ0 group  NN1 of  PRF … 

50891889 EAA … group  NN1 of  PRF people  NN0 … 

50891890 EAA … of  PRF people  NN0 at  PRP … 

50891891 EAA … people  NN0 at  PRP work NN1 … 

50891892 EAA … at  PRP work NN1 ,  PUN … 

50891893 EAA … work NN1 ,  PUN there  EX0 … 

50891894 EAA … ,  PUN there  EX0 will  VM0 … 

50891895 EAA … there  EX0 will  VM0 be  VBI … 

50891896 EAA  will  VM0 be  VBI significant  AJ0  

 
In addition to this main sequential n-gram table, there is also a small table that contains ‘meta-data’ 
for each of the 4000+ texts in the BNC.  For example, the following shows just a few of the columns 
of information for a handful of entries from this table, centred on the [EAA] text: 
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Table 6. Text meta information table 
text register topics title 
EA8 W_commerce leadership; commerce Making it happen… 
EA9 W_commerce hotel management; tourism The hotel receptionist… 
EAA W_soc_science - Managing people at… 
EAJ W_soc_science public law; politics Public law and political... 
EAK W_nat_science scientific research Nature. London: Macmillan… 
 
Let us now consider how these tables can be used to create quick, powerful queries on even large 
corpora such as the BNC. 
 
Basic frequency data for words, phrases, substrings, and collocations 
Basic queries, even on large corpora such as the 100 million British National Corpus are quite fast 
with the new architecture.  They also have the added benefit of including all matching strings – not 
just the most frequent n-grams, as is the case with some other architectures.  For example, to find the 
most frequent nouns following break + a/the + NOUN (break the news, break a promise), the user 
would enter the following string via the web-based interface.  This would be converted to the following 
SQL command, which would produce the results seen in Table 2 above. 
 

(4)  
QUERY: break a/the [nn*] 

 
SQL:  
SELECT TOP 100 
COUNT(*),WORD4,POS4,WORD5,POS5,WORD6,POS6 
FROM [TABLE_NAME] WHERE  
WORD4 = 'BREAK' AND 
WORD5 IN ('THE','A') AND 
POS6 LIKE 'NN%' 
GROUP BY WORD4,POS4,WORD5,POS5,WORD6,POS6 
ORDER BY COUNT(*) DESC 

 
Any combination of substrings, words, or part of speech in a seven-word window can be used for the 
query.   

In addition to seeing just raw frequencies, one can also see a ‘relevancy-based‘ display, which 
is based on a modified z-score.  With a simple raw-frequency sorting ([SORT BY: RELEVANCE] in 
the search form), a query like [ * chair ] would produce results like a chair, the chair, his chair, etc. 
However, if the user selects [SORT BY: RELEVANCE] in the search form, then the results will be 
high-backed chair, sedan chair, wicker chair, swivel chair, etc.  To produce this results set, the script 
1) finds the raw percentage for all strings matching [* chair] 2) finds the overall frequency of the words 
in the [*] slot (e.g. the, wooden, swivel, etc), and then 3) divides the first figure by the second.  In this 
case, though, the three-step query still only takes about one half of a second to return the results from 
the  100 million word corpus. 
 
Comparing related words 
A major advantage of storing the n-grams in a relational database is that this architecture lends itself 
well to frequency comparisons between sets of words.  For example, it is possible to find all of the 
collocates of a given WORD 1 and the collocates of a different WORD 2, and then compare these two 
lists within the database itself.  For example, a user can see the difference between two or more 
synonyms by finding the collocates that occur with one but not with the other, and all of this can be 
carried out in just one or two seconds. 
 As a concrete example, assume that a non-native speaker of English is interested in the 
difference between utter, sheer, and absolute.  The user would enter the following into the web-based 
search form: 
 

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX. 
 

7



(5) 
QUERY: {utter/sheer/absolute} [n*] 

 
The curly brackets around the three synonyms indicates that the user wants to find the collocates for 
each of these three words, and then ‘group’ these collocates together for each individual word.  The 
results would look like the following: 
 
Table 7. Grouping by synonyms:  

% + - SHEER  
1.00 60 -- weight
1.00 31 -- force 
1.00 26 -- luck
1.00 23 -- quantity 
1.00 13 -- cliff
1.00 12 -- cliffs 
1.00 11 -- coincidence 
1.00 10 -- enjoyment 

% + - UTTER  
1.00 19 -- confusion 
1.00 5 -- condemnation 
1.00 5 -- devastation 
1.00 5 -- disregard 
1.00 5 -- helplessness 
1.00 4 -- loneliness 
1.00 3 -- dejection
1.00 3 -- ruthlessness  

% + - ABSOLUTE  
1.00 98 -- majority 
1.00 84 -- terms
1.00 54 -- zero
1.00 53 -- minimum
1.00 51 -- value 
1.00 39 -- egalitarianism 
1.00 33 -- right 
1.00 27 -- price  

 
This would indicate to the language learner, for example, that sheer occurs with weight (60 tokens), 
force (31 tokens), and luck (26), but that none of these words occur with either utter or absolute.  
Utter, on the other hand, is the only one of the three synonyms that occurs with confusion (10 
tokens), condemnation (5) and devastation (5), and absolute is the only synonym with majority (98), 
terms (84) and zero (54). 
 To process this query, the script carries out a number of steps: 1. find all nouns following 
sheer; 2. find all nouns following utter; 3. find all nouns following absolute; 4. stores all of the results 
for these three queries in a temporary table; 5. runs three separate, sequential SQL queries to find 
the most frequent collocates for each of these words, which do not occur with either of the other two. 
(It is also possible to sort by raw frequency with each word, rather than WORD1 vs WORD2 / 
WORD3, as shown above)   
 Notice that comparisons such as these might be possible, but they would certainly be much 
more cumbersome with other architectures.  For example, users of those interfaces could carry out a 
query with WORD 1, and then WORD 2, and so on.  They would then copy and paste the results into 
separate tables of a database, and then (assuming some skill in SQL), carry out cross-table JOINs to 
determine the relative frequency with the different words.  In this case however, the process would 
probably take at least 3-4 minutes, whereas with our interface it takes only about 1.2 seconds. 
 
Integration with other databases 
Another important advantage of the relational database approach is that the central n-gram tables 
can be integrated with other relational databases.  For example, the frequency information from the 
BNC/VIEW databases can be joined with semantic information from other databases such as 
WordNet (Fellbaum 1998, Landes et al 1998), or with personalized lists (relating to semantic fields) 
created by the user. 
 Let us take a concrete example, which we have already discussed elsewhere (Davies, 
forthcoming).  In order to add a strong semantic component to the VIEW/BNC database, we have 
imported into a separate database the entire contents of WordNet – a semantically-based hierarchy 
of hundreds of thousands of words in English.  The ‘synsets’ that make up WordNet indicate roughly 
equivalent meanings (synonyms), more specific words (hypernyms) and more general words 
(hyponyms) for a given word, as well as ‘parts’ (meronyms)  of a larger group (e.g. parts of a body) or 
the larger groups to which a certain word belongs (holonyms; e.g. leg > table / body). 

At the most basic level, a user can simply submit as a query something like the following: 
 

(6) 
QUERY: [=sad] 
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http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=weight&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=force%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=luck&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=quantity%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=cliff&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=cliffs%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=coincidence%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=enjoyment&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=confusion%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=condemnation%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=devastation%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=disregard%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=helplessness%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=loneliness%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=dejection&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=ruthlessness%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=majority%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=terms&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=zero&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=minimum&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=value%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=egalitarianism%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=right%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=price%20&c5=nn%25


The script sees the equal sign and interprets this as a query to find all synonyms of sad.  The script 
then retrieves all of the matching words from WordNet and finds the frequency of each of these words 
in the BNC.  Users can also limit the hits by part of speech, and can also intervene before seeing the 
frequency listing to select just certain synsets (or meanings) from WordNet.  
 
Table 8. WordNet/BNC integration: frequency of synonyms of sad 
1      SORRY 10767 
2      SAD 3322 
3      DISTRESSING 359 
4      PITIFUL 199 
5      DEPLORABLE 144 
6      LAMENTABLE 69 
 
The WordNet data can also be integrated into more advanced queries.  A user can – with one simple 
query – compare which nouns occur with the different synonyms of a given word.  For example, the 
following query finds all cases of a noun following a synonym of bad: 
 
 (7) 
 QUERY: [=bad ] [nn*] 
 
In less than four seconds, the user then sees something similar to the following.  (The format on the 
web interface is somewhat different to the abbreviated listing shown here). 
 
Table 9. Synonyms of [bad] + NOUN 
   PHRASE FREQ    PHRASE FREQ 
  disgusting thing  16   severe shortage  26 
  disgusting way  5   severe weather  43 
  distasteful species  5   severe winter  49 
  evil empire  10   terrible accident  26 
  evil eye  24   terrible blow  13 
  evil influence  9   terrible danger  14 
  foul language  29   terrible feeling  19 
  foul mood  21   terrible mistake  48 
  foul play  72   terrible shock  41 
  foul temper  14   wicked grin  6 
  severe blow  44   wicked people  13 
  severe burn  28   wicked thing  27 
  severe damage  59   wicked way  14 
  severe drought  30   wicked witch  12 
  severe illness  23   
 

Such collocational data can be very useful for a language learner, who is probably unsure of 
the precise semantic range of each adjective.  The type of listing given above, which shows the most 
common nouns with each of the adjectives, can easily permit the language learner to make 
inferences about the semantic differences between each of the competing adjectives.  For example, 
s/he would see that severe illness occurs but wicked illness does not, and that terrible mistake is 
common, whereas foul mistake is not.   

Finally, it is again worth noting that such a query would be extremely difficult with an 
architecture that does not allow user access to other databases that can be tied into the main 
frequency/n-gram databases.  Without our approach, users would likely have to create the list of 
synonyms in another program, perhaps run queries with each of these words individually, and then 
collate and sort the results in a spreadsheet.  In our approach, all of this is done by the web-based 
script in less that two seconds. 
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http://view.byu.edu/showreg.asp?s=n&w4=sorry&c4=
http://view.byu.edu/r3.asp?s=n&w4=sorry&c4=
http://view.byu.edu/showreg.asp?s=n&w4=sad&c4=
http://view.byu.edu/r3.asp?s=n&w4=sad&c4=
http://view.byu.edu/showreg.asp?s=n&w4=distressing&c4=
http://view.byu.edu/r3.asp?s=n&w4=distressing&c4=
http://view.byu.edu/showreg.asp?s=n&w4=pitiful&c4=
http://view.byu.edu/r3.asp?s=n&w4=pitiful&c4=
http://view.byu.edu/showreg.asp?s=n&w4=deplorable&c4=
http://view.byu.edu/r3.asp?s=n&w4=deplorable&c4=
http://view.byu.edu/showreg.asp?s=n&w4=lamentable&c4=
http://view.byu.edu/r3.asp?s=n&w4=lamentable&c4=
http://128.187.82.234/wn_bnc/x4.asp?w1=qqdisgusting&w2=qqThing&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqshortage&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqdisgusting&w2=qqWay&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqWeather&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqdistasteful&w2=qqspecies&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqWinter&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqevil&w2=qqEmpire&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqAccident&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqevil&w2=qqEye&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqBlow&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqevil&w2=qqinfluence&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqdanger&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqfoul&w2=qqlanguage&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqfeeling&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqfoul&w2=qqMood&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqmistake&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqfoul&w2=qqPlay&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqshock&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqfoul&w2=qqtemper&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqwicked&w2=qqgrin&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqBlow&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqwicked&w2=qqPeople&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqBurn&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqwicked&w2=qqthing&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqdamage&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqwicked&w2=qqway&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqdrought&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqwicked&w2=qqwitch&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqillness&w3=qq&c1=qqa&c2=qqn&c3=qq


Register-based queries 
As was discussed previously, one serious shortcoming of many other approaches is that it is either 
difficult or impossible to compare the results of different sub-corpora – for example, different registers 
or different historical periods.  With the newer BNC/VIEW architecture, however, this is both quite 
simple and quite fast.   
 Recall that with the ‘sequential n-gram’ architecture, each word in the corpus appears on its 
own line in the database: 
 
Table 10. Sequential n-gram table 
ID text … word3 pos3 word4 pos4 word5 pos5 … 

50891887 EAA … a  AT0 small  AJ0 group  NN1 … 

50891888 EAA … small  AJ0 group  NN1 of  PRF … 

50891889 EAA … group  NN1 of  PRF people  NN0 … 

50891890 EAA … of  PRF people  NN0 at  PRP … 

50891891 EAA … people  NN0 at  PRP work NN1 … 

50891892 EAA … at  PRP work NN1 ,  PUN … 

50891893 EAA … work NN1 ,  PUN there  EX0 … 

50891894 EAA … ,  PUN there  EX0 will  VM0 … 

50891895 EAA … there  EX0 will  VM0 be  VBI … 

50891896 EAA  will  VM0 be  VBI significant  AJ0  

 
As shown previously, there is also a small table that contains ‘meta-data’ for each of the 4000+ texts 
in the BNC: 
 
Table 11. Text meta information table 
text register topics title 
EA8 W_commerce leadership; commerce Making it happen… 
EA9 W_commerce hotel management; tourism The hotel receptionist… 
EAA W_soc_science - Managing people at… 
EAJ W_soc_science public law; politics Public law and political... 
EAK W_nat_science scientific research Nature. London: Macmillan… 
 

To limit the query to one particular register (or set of registers) or to compare between 
registers, the script relies on a SQL JOIN between these two tables.  It looks for all rows that match 
the n-gram table (Table 10 above), all texts that match the specific register(s) (Table 11 above), and 
then limits these hits to just those that have a particular text in common (e.g. EAA above). Examples 
of the types of register-based queries might be queries to find which nouns, or verbs, or three word 
lexical bundles, or collocates with chair occur more in one register (e.g. FICTION) than in another 
(e.g. ACADEMIC). 
 For example, suppose that a user wants to find which verbs are more common in legal texts 
than in academic texts generally.  S/he would simply select the following in the web-based form: 
 

(8) 
QUERY: [vvi] 
REGISTER 1 [w_ac_polit_law_edu] (from pull-down menu) 
REGISTER 2 [ACADEMIC] 

 
This searches for all infinitival lexical verbs (VVI) in law texts (w_ac_polit_law_edu), and then all 
infinitival verbs in ACADEMIC texts as a whole, and then compares the two sets of words.  The words 
– representing verbs that are highly frequent in a legal context – are found in the following table: 
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Table 12. Searching by register; lexical verbs in legal texts 
WORD/PHRASE TOKENS 

REG1 
TOKENS 
REG2 

PER MIL IN REG1 
[4,640,346 WORDS] 

PER MIL IN REG2 
[10,789,236 WORDS] 

RATIO 

     SUE 331 10 71.33 0.93 76.96 
     CERTIFY 27 2 5.82 0.19 31.39 
     ADJOURN 26 2 5.60 0.19 30.23 
     NOTIFY 38 3 8.19 0.28 29.45 
     WAIVE 38 3 8.19 0.28 29.45 
     DISCLOSE 190 16 40.95 1.48 27.61 
     OVERRULE 23 2 4.96 0.19 26.74 
     PROHIBIT 53 5 11.42 0.46 24.65 
     PLEAD 62 6 13.36 0.56 24.03 
 
 Again, note that such comparisons would possibly be quite cumbersome for competing 
architectures.  To the degree that these architectures allow queries by sub-corpora (and not all do), 
users could carry out a query for [VVI] in Register 1 and then a subsequent query in Register 2.  They 
would then copy and paste the results into separate tables in a database, and then carry out cross-
table JOINs to determine the relative frequency in the two registers.  Again, however, the process 
would probably take at least 3-4 minutes, whereas with our interface it takes only about two seconds. 
 
Expanding collocate searches 
The architecture described to this point works well for determining the frequency of words, substrings, 
phrases, and ‘slot-based’ searches (e.g. ADJ + world, synonym of [tired] + NOUN, etc).  One 
fundamental disadvantage of the architecture, however, is that it is limited by its very nature to strings 
that occur within a seven word window.  This is because that is the number of columns in the 
‘sequential n-gram’ table (see Table 5 above).  Therefore, if one wanted to find all the nouns that 
occur within a wider context of a given adjective, for example, it would not be possible with this 
architecture. 
 Recently however, we changed the searching algorithm to allow for the recovery of collocates 
from much wider context – up to ten words to the left and to the right of a given word.  There are 
several steps in the script that carries out such queries.  Let us take a concrete example to see how 
this would work.  Assume that we are looking for adjectives that are collocates – ten words to the left 
or right – of the word woman.  First, the script finds all of the ID values (=word offset values in the 
corpus) for woman – more than 22,000 occurrences in the 100 million word corpus – and these are 
stored in a temp table.  We then find all of the adjectives in the corpus whose ID value is between ten 
more and ten less than the ID values in the temp table.  These are placed in a second temp table, 
and a SQL command then finds the most common words in this table.  Overall, the script takes about 
5-6 seconds to run, and yields adjectives like young, old, beautiful, married, etc. 
 As with the ‘slot-based’ queries (e.g. ADJ + woman) these collocates can then be compared to 
the collocates of a competing word, such as man, to determine with collocates are used with woman 
much more than with man (e.g. childless, pretty, pregnant, distraught, fragile, desirable), or more with 
man than with woman (e.g. honourable, reasonable, military, modest, rational). 

Likewise, one can compare collocates across registers, to look for possible polysemy with a 
given word.  For example, one could look for adjectives with chair that are more common in fiction 
than in academic text (e.g. small, hard, rocking, asleep) or which are more common in academic text 
than in fiction (e.g. senior, philosophical, established, powerful).  Again, this script only takes about 
1.5 seconds to produce the list of contrasting collocates. 
 
Conclusion 
We hope to have demonstrated two fundamental facts in this paper.  First, it is often insightful and 
advantageous to look at word frequency in context – by register, in historical terms, in syntagmatic 
terms (collocations) and paradigmatic terms (a given word contrasted with competing words that fill 
the same slot, such as synonyms).  Second, the highly-structured relational databases lend 
themselves well to the comparison of contexts.  Word frequency, then, can be analysed not just as 
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http://view.byu.edu/brtest/r3.asp?s=n&w4=sue&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=certify&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=adjourn&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=notify&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=waive&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=disclose&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=overrule&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=prohibit&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=plead&c4=


the overall frequency of a given word or lemma in a certain corpus, but rather as the frequency of 
words in a wide range of related contexts. 
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