

AHRC ICT Methods Network
 www.methodsnetwork.ac.uk

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

WORD FREQUENCY AND KEYWORD EXTRACTION
AHRC ICT Methods Network Expert Seminar on Linguistics
8 September 2006, Lancaster University, UK

Word frequency in context: Alternative architectures for examining related words,
register variation, and historical change

Mark Davies, Brigham Young University, USA.

Keywords
mega-corpora, relational database, n-gram, integration, frequency, slot-based queries, collocates.

Abstract
The use of relational databases that are composed of the frequency of n-gram in a given corpus
allows users to quickly and easily examine word frequency. Perhaps the first large corpus to use such
an approach was the 100 million word Corpus del Español, which was created in 2002
(www.corpusdelespanol.org/). This was followed by two BNC-based 100 million word corpora that
were modelled on the same architecture: Phrases in English (pie.usna.edu) and Variation in English
Words and Phrases (VIEW; view.byu.edu), as well as a 40 million word Corpus of Historical English
(view.byu.edu/che)

The relational database/n-grams architecture allows simple word frequency queries such as the
following (all of which can be carried out on a 100 million word corpus in 1-2 seconds):

• Overall frequency of a given word, set of words, phrase, or substring in the corpus
• ‘Slot-based’ queries; e.g. the most common nouns one ‘slot’ after mysterious, or z-score ranked

words immediately preceding chair
• Wide-range collocates; e.g. the most common nouns within a ten word window (left or right) of

string or broken

In addition, however, the architecture that we have used for VIEW and the Corpus of Historical
English allows several other types of queries that cannot be carried out directly with competing
architectures (e.g. SARA/XARA, the IMS Corpus Workbench, or the Phrases in English architecture),
including the following:

• Comparison of frequency with related words; e.g. nouns occurring immediately after utter but not

after complete or sheer, or adjectives within ten words of woman but not man
• One simple query to find the frequency of words in separate databases, such as user-defined,

customized lists (clothing, emotions, technology terms, etc) or synsets from WordNet
• Register variation; e.g. all verbs or all words ending in *ble or all three-word lexical bundles that

are more common in academic texts than in fiction, or in legal or medical texts
• Historical variation; e.g. words, phrases, or collocates of a given word or part of speech, which are

more common in the 1900s than in the 1800s

Finally, even within the relational database/n-grams approach, there are competing architectures that
favour certain types of queries over others, and we will briefly consider some of these issues.

Introduction
Since the advent of ‘mega-corpora’ that are 100 million words in size or larger, there have
been challenges in terms of economically extracting large amounts of data. For example,
several years ago it was sufficient to create a query engine that would perform a linear scan
of the text, and such an architecture might return the results from a one million word corpus
in 1-2 seconds. Using that same architecture, however, a similar query on a 100 million word
corpus might take 100-200 seconds. As a result of these performance issues, in the last 10-
15 years a number of alternate architectures have been developed. These include the use of
large numbers of indices that contain offset values for each word in the corpus and the use of
large hash operations to find nearby words (e.g. SARA/XAIRA: Burnage and Dunlop 1993,
Burnard 2000) and the relational database architecture of the IMS Corpus Workbench (Christ
1994).
 During the past five years, we have employed a modified relational database
architecture for a number of corpora that we have created. In contrast to the IMS Corpus
Workbench approach, however, these corpora rely heavily on an ‘n-gram’ architecture, which
will be one of the major topics of this paper. These corpora include the 100 million word
Corpus del Espanol (www.corpusdelespanol.org) and a new architecture and interface for
the 100 million word British National Corpus (view.byu.edu), both of which will be discussed
herein.
 As with some other competing architectures, this relational database/n-gram approach
allows queries like the following:

• the overall frequency of a given word or phrase in the corpus (mysterious, blue skies)
• the frequency words with a given substring (*able, *heart*, etc)
• queries involving part of speech or lemma (e.g. utter NN1, as ADJ as, ADV VVD ‘barely
realized’)

Unlike some other architectures, however, our approach is quite fast. Any of the preceding
queries on a 100 million word corpus would take less than one second.
 In addition, as we will see, our approach allows a number of types of query that would
be difficult or impossible to carry out directly in one step with competing architectures. These
include – but certainly are not limited to – the following:

• Comparison of frequency with related words; e.g. nouns occurring immediately after utter
but not after complete or sheer, or adjectives within ten words of woman but not man
• One simple query to find the frequency of words in separate databases, such as user-
defined, customized lists (clothing, emotions, technology terms, etc.) or synsets from
WordNet
• Register variation; e.g. all words ending in *icity, or all verbs, or all three-word lexical
bundles, which are more common in academic texts than in works of fiction, or in legal or
medical texts
• Historical variation; e.g. all words, phrases, or collocates of a given word or part of speech,
which are more common in the 1900s than in the 1800s

In the discussion that follows, we will first present the basic architecture (relational databases
and n-grams) and provide concrete examples of some of the types of queries that this
architecture allows. We will then discuss shortcomings of this architecture, and consider how
these issues have been handled in some of the newer interfaces that we have created, such
as the VIEW interface for the BNC (http://view.byu.edu).

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

2

A simple n-gram architecture
Let us first consider the ’first-generation‘ approach to relational databases and n-grams, which was
used for the Corpus del Espanol (http://www.corpusdelespanol.org) that we created in 2001-02 (see
Davies 2005a, 2005b), and the subsequent BNC-based ’Phrases in English‘ database and interface
that was based on the same architecture and which was created by William Fletcher in 2003
(http://pie.usna.edu).
 In this approach, one uses a program to create the n-grams of a given corpus, such as the
WordList module of WordSmith (Scott 2004) or the KFN-gram program
(http://miniappolis.com/KWiCFinder/kfNgramHelp.html). For example, with WordSmith, one would
simply create separate lists of all of the 1-grams, 2-grams, 3-grams, etc. in the corpus, and then
import these into a relational database. In the case of 3-grams for the BNC, for example, a small
section of the 3-grams table would look like the following:

Table 1. Example of 3-grams where lem1 = ‘break’ and word2 = ‘the’

FREQ WORD1 WORD2 WORD#

106 breaking the law

98 break the law

56 broke the silence

53 break the news

46 broke the news

40 break the deadlock

24 broken the law

23 break the habit

Each unique three-word string in the corpus appears in the database, with its associated frequency.
For example, in the BNC breaking the law occurs 106 times, broke the law occurs 56 times, and so
on.
 It is also possible to create frequency tables that include POS (part of speech) and
lemmatization information as well. In this case, the table might look like the following:

Table 2. Example of 3-grams where LEM1 = ‘break’ and WORD2 = ‘the’
FREQ WORD1 LEM1 POS1 W2 LEM2 POS2 W3 LEM3 POS3

106 breaking break VVG the the AT0 law law NN1

98 break break VVI the the AT0 law law NN1

56 broke break VVD the the AT0 silence silence NN1

53 break break VVI the the AT0 news news NN1

46 broke break VVD the the AT0 news news NN1

40 break break VVI the the AT0 deadlock deadlock NN1

24 broken break VVN the the AT0 law law NN1

23 break break VVI the the AT0 habit habit NN1

With these n-gram/frequency tables, it is a relatively simple process to use SQL queries to

extract the desired data. For example, to extract the 100 most common singular nouns (NN1) in the
BNC, the SQL query would be the following:

(1)
SELECT TOP 100 * FROM [TABLE_NAME] WHERE
POS1 = ‘NN1’
ORDER BY FREQ DESC

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

3

To select the 100 most common three-word strings where the first word is a form of break, the second
word is a or the, and the third word is a noun, the SQL query would be the following, and the results
would be those seen in Table 2 above:

(2)
SELECT TOP 100 * FROM [TABLE_NAME] WHERE
LEM1 = ‘BREAK’ AND
WORD2 = ‘THE’ AND
POS3 LIKE ‘NN%’
ORDER BY FREQ DESC

Either of these two queries would take less than half a second to retrieve the 100 most frequent
matching words or strings from the 100 million word corpus. This is the approach used in our Corpus
del Espanol and in the Phrases in English interface, and it represents an early approach to the use of
n-grams.

Accounting for register or historical variation
There is a serious problem, however, associated with a strict n-gram architecture. Once the
frequencies are calculated for each unique n-gram in the corpus, one then loses all contextual
information for that n-gram – in other words, in which part of the corpus each of these n-grams occur.
For example, Table 2 above shows that breaking the law occurs 106 times in the corpus, but at this
point we have no idea how many of these are in the SPOKEN texts, or FICTION, or NEWSPAPERS.
Therefore, using this approach it would probably be impossible to find the most frequent words or
phrases in a given register, or to compare the frequency of words or phrases in two competing (sets
of) registers.

There is a way around the lack of context for each n-gram, however. One could calculate the
overall n-gram frequency for a set of different registers (as in Table 2), and then create n-gram
frequency tables for each register individually. One would then ‘merge’ the information from the
‘register’ tables into the overall frequency table, which would contain separate columns (for each n-
gram) showing the frequency in each register. In other words, the resulting table might look like the
following

Table 3. Example of 3-grams where LEM1 = ‘break’ and WORD2 = ‘the’
WORD1 LEM1 POS1 … W3 LEM3 POS3 REG1 REG2 REG3
breaking break VVG … law law NN1 x1 y1 z1
break break VVI … law law NN1 x2 y2 z2
broke break VVD … silence silence NN1 x3 y3 z3
break break VVI … news news NN1 x4 y4 z4
broke break VVD … news news NN1 x5 y5 z5
break break VVI … deadlock deadlock NN1 x6 y6 z6
broken break VVN … law law NN1 x7 y7 z7
break break VVI … habit habit NN1 x8 y8 z8

This is in fact the approach taken in the construction of the 100 million word Corpus del Espanol. For
each n-gram, there are columns that show the frequency of the string in each century from the 1200s
to the 1900s (x12-x19 below). There are also separate columns containing the frequency of the n-
gram in each of the three registers SPOKEN, FICTION, and NON-FICTION in the 1900s. The
following is a small section of bi-grams table, containing a few of the n-grams that match the query
NOUN + lemma DURO ‘hard N’:

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

4

Table 4. ‘Hard N’ (N duro) in the Corpus del Español, by century
WORD1 WORD2 x12 … x17 x18 x19 x19SP x19FIC x19NF

MANO DURA 0 … 0 10 22 6 9 7

LÍNEA DURA 0 … 0 0 12 0 3 9

SER DURO 0 … 1 9 10 7 1 2

CUELLO DURO 1 … 0 0 10 9 1 0

MADERA DURA 0 … 0 5 10 7 0 3

CARA DURA 0 … 0 3 10 6 4 0

The advantage of using such an approach should be readily apparent. Because each n-gram
has the associated frequency in each of the different historical periods and the different registers, this
frequency information can be accessed directly as part of the query. For example, in the case of the
Corpus del Espanol, we can find which nouns occur with duro ‘hard’ in the 1900s, but not in the
1800s. The SQL query would look something like the following (simplified here from how it would
appear in the actual database):

 (3)

SELECT TOP 100 * FROM [TABLE_NAME] WHERE
 POS1 = ‘NOUN’ AND
 LEM2 = ‘DURO’ AND
 X19 <> 0 AND
 X18 = 0
 ORDER BY X19 DESC

This gives us results like línea dura ‘hard line’, disco duro ‘hard drive’, and años duros ‘hard years’,
etc.

In spite of the advantages of this approach, one problem is that it is quite costly to run the
SQL UPDATE commands that copy the frequency information (for tens of millions of n-grams) from
each of the separate tables (1200s, 1500s, 1900s-FIC, etc) into the main n-gram tables. In addition,
this approach may only be practical when there are a limited number of frequency columns, such as
the eleven columns in the Corpus del Espanol (1200s-1900s, and three additional registers for the
1900s). In the case of the BNC, on the other hand, there are nearly 70 different registers, according
to the categorization made by David Lee (see
http://opinion.nucba.ac.jp/~davidlee/devotedtocorpora/home/BNC_WORLD_INDEX.ZIP).
 In summary, the frequency information from each sub-corpus can be quite valuable, in terms
of being able to compare between different historical periods, different registers, and so on.
However, because of the difficulty in creating such tables, they are not used in some other competing
architectures and interfaces. As a result, with these approaches, it is only possible to look at word and
phrase frequency across the entire corpus.

The issue of size
In addition to the problem of ‘granularity’ in terms of frequency in sub-registers, another problem with
a strict n-gram approach has to do with the size of the tables. While there are only about 800,000
rows in the [1-grams] table of the BNC (i.e. 800,000+ unique types in the corpus), this increases to
about 11 million unique [2-grams] and 40 million unique [3-grams], and it would move towards 90-95
million unique 7-grams for the 100 million words.
 The problem with this approach, then, is that the n-gram tables become quite unmanageable in
terms of size. Even with efficient clustered indexes on the tables, it may take 10-15 seconds to return
the results from a particularly difficult query, such as the most frequent n-grams for [the NN1 that].
The second problem is that once we add up all of the different n-gram tables (1-grams + 2-grams + 3-
grams, etc), we soon find that the total number of rows in these tables is larger than the total number
of words in the corpus, especially if we include the 4-grams through 7-grams.

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

5

 As a result of the size issue, the approach taken in the construction of the Phrases in English
database and interface (http://pie.usna.edu) is to include just those n-grams that occur three times or
more. By eliminating from the tables all n-grams that occur just one or two times, the size of the
tables is reduced dramatically – by 75% in the case of the 3-grams, and even more for 4-grams
through 7-grams. Therefore there is a large performance gain by eliminating all n-grams that occur
just once or twice. Unfortunately, with this approach, one also completely loses the ability to analyze
these less-common strings. If one is interested in only the highly-frequent n-grams, this is probably
not much of problem. But for detailed comparison of sub-corpora, or to see which phrases are
entering into or leaving the language, it is problematic to exclude 75% or more of all n-gram types.

As we have seen, there are two basic problems with a strict n-gram approach. First, in terms
of sub-corpora, we either have to ignore the context in which each n-gram appears (register, historical
period, etc), or else we have to create tables that are quite difficult to construct, by merging in the
frequency for each sub-corpus into a column in the main n-gram table. Second, in terms of size and
speed, we either create tables that eliminate n-grams that occur just one or two times (and thus lose
75% or more of all unique n-grams), or we have a number of separate n-gram tables (2-grams, 5-
grams, etc) whose combined size in terms of rows is probably much larger than the total number of
words in the corpus.

An alternate architecture – all sequential n-grams
There is a ‘second-generation’ approach, however, that avoids both of the problems with a strict n-
gram approach. In this architecture, we create one single database table that has as many rows as
the total number of words in the corpus. Each row contains a sequential word in the corpus (along
with part of speech and other information, if desired). Most likely, these sequential words will be one
of the central columns of the table. This column is then surrounded on the left and right by a number
of ‘contextual’ columns, to create a ‘context window’ for each word in the corpus.

For example, the following table represents the main table in our BNC/VIEW database
(http://view.byu.edu). This table contains about 100 million rows (one for each sequential word in the
BNC), with each word in corpus (column word4) surrounded by three words to the left (word1-word3)
and three words to the right (word5-word7), as well as the ‘word offset’ ID and the text from which the
n-gram is taken (for the sake of brevity, only word3-word5 are shown here):

Table 5. Sequential n-gram ‘tokens’
ID text … word3 pos3 word4 pos4 word5 pos5 …

50891887 EAA … a AT0 small AJ0 group NN1 …

50891888 EAA … small AJ0 group NN1 of PRF …

50891889 EAA … group NN1 of PRF people NN0 …

50891890 EAA … of PRF people NN0 at PRP …

50891891 EAA … people NN0 at PRP work NN1 …

50891892 EAA … at PRP work NN1 , PUN …

50891893 EAA … work NN1 , PUN there EX0 …

50891894 EAA … , PUN there EX0 will VM0 …

50891895 EAA … there EX0 will VM0 be VBI …

50891896 EAA will VM0 be VBI significant AJ0

In addition to this main sequential n-gram table, there is also a small table that contains ‘meta-data’
for each of the 4000+ texts in the BNC. For example, the following shows just a few of the columns
of information for a handful of entries from this table, centred on the [EAA] text:

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

6

Table 6. Text meta information table
text register topics title
EA8 W_commerce leadership; commerce Making it happen…
EA9 W_commerce hotel management; tourism The hotel receptionist…
EAA W_soc_science - Managing people at…
EAJ W_soc_science public law; politics Public law and political...
EAK W_nat_science scientific research Nature. London: Macmillan…

Let us now consider how these tables can be used to create quick, powerful queries on even large
corpora such as the BNC.

Basic frequency data for words, phrases, substrings, and collocations
Basic queries, even on large corpora such as the 100 million British National Corpus are quite fast
with the new architecture. They also have the added benefit of including all matching strings – not
just the most frequent n-grams, as is the case with some other architectures. For example, to find the
most frequent nouns following break + a/the + NOUN (break the news, break a promise), the user
would enter the following string via the web-based interface. This would be converted to the following
SQL command, which would produce the results seen in Table 2 above.

(4)
QUERY: break a/the [nn*]

SQL:
SELECT TOP 100
COUNT(*),WORD4,POS4,WORD5,POS5,WORD6,POS6
FROM [TABLE_NAME] WHERE
WORD4 = 'BREAK' AND
WORD5 IN ('THE','A') AND
POS6 LIKE 'NN%'
GROUP BY WORD4,POS4,WORD5,POS5,WORD6,POS6
ORDER BY COUNT(*) DESC

Any combination of substrings, words, or part of speech in a seven-word window can be used for the
query.

In addition to seeing just raw frequencies, one can also see a ‘relevancy-based‘ display, which
is based on a modified z-score. With a simple raw-frequency sorting ([SORT BY: RELEVANCE] in
the search form), a query like [* chair] would produce results like a chair, the chair, his chair, etc.
However, if the user selects [SORT BY: RELEVANCE] in the search form, then the results will be
high-backed chair, sedan chair, wicker chair, swivel chair, etc. To produce this results set, the script
1) finds the raw percentage for all strings matching [* chair] 2) finds the overall frequency of the words
in the [*] slot (e.g. the, wooden, swivel, etc), and then 3) divides the first figure by the second. In this
case, though, the three-step query still only takes about one half of a second to return the results from
the 100 million word corpus.

Comparing related words
A major advantage of storing the n-grams in a relational database is that this architecture lends itself
well to frequency comparisons between sets of words. For example, it is possible to find all of the
collocates of a given WORD 1 and the collocates of a different WORD 2, and then compare these two
lists within the database itself. For example, a user can see the difference between two or more
synonyms by finding the collocates that occur with one but not with the other, and all of this can be
carried out in just one or two seconds.
 As a concrete example, assume that a non-native speaker of English is interested in the
difference between utter, sheer, and absolute. The user would enter the following into the web-based
search form:

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

7

(5)
QUERY: {utter/sheer/absolute} [n*]

The curly brackets around the three synonyms indicates that the user wants to find the collocates for
each of these three words, and then ‘group’ these collocates together for each individual word. The
results would look like the following:

Table 7. Grouping by synonyms:

% + - SHEER
1.00 60 -- weight
1.00 31 -- force
1.00 26 -- luck
1.00 23 -- quantity
1.00 13 -- cliff
1.00 12 -- cliffs
1.00 11 -- coincidence
1.00 10 -- enjoyment

% + - UTTER
1.00 19 -- confusion
1.00 5 -- condemnation
1.00 5 -- devastation
1.00 5 -- disregard
1.00 5 -- helplessness
1.00 4 -- loneliness
1.00 3 -- dejection
1.00 3 -- ruthlessness

% + - ABSOLUTE
1.00 98 -- majority
1.00 84 -- terms
1.00 54 -- zero
1.00 53 -- minimum
1.00 51 -- value
1.00 39 -- egalitarianism
1.00 33 -- right
1.00 27 -- price

This would indicate to the language learner, for example, that sheer occurs with weight (60 tokens),
force (31 tokens), and luck (26), but that none of these words occur with either utter or absolute.
Utter, on the other hand, is the only one of the three synonyms that occurs with confusion (10
tokens), condemnation (5) and devastation (5), and absolute is the only synonym with majority (98),
terms (84) and zero (54).
 To process this query, the script carries out a number of steps: 1. find all nouns following
sheer; 2. find all nouns following utter; 3. find all nouns following absolute; 4. stores all of the results
for these three queries in a temporary table; 5. runs three separate, sequential SQL queries to find
the most frequent collocates for each of these words, which do not occur with either of the other two.
(It is also possible to sort by raw frequency with each word, rather than WORD1 vs WORD2 /
WORD3, as shown above)
 Notice that comparisons such as these might be possible, but they would certainly be much
more cumbersome with other architectures. For example, users of those interfaces could carry out a
query with WORD 1, and then WORD 2, and so on. They would then copy and paste the results into
separate tables of a database, and then (assuming some skill in SQL), carry out cross-table JOINs to
determine the relative frequency with the different words. In this case however, the process would
probably take at least 3-4 minutes, whereas with our interface it takes only about 1.2 seconds.

Integration with other databases
Another important advantage of the relational database approach is that the central n-gram tables
can be integrated with other relational databases. For example, the frequency information from the
BNC/VIEW databases can be joined with semantic information from other databases such as
WordNet (Fellbaum 1998, Landes et al 1998), or with personalized lists (relating to semantic fields)
created by the user.
 Let us take a concrete example, which we have already discussed elsewhere (Davies,
forthcoming). In order to add a strong semantic component to the VIEW/BNC database, we have
imported into a separate database the entire contents of WordNet – a semantically-based hierarchy
of hundreds of thousands of words in English. The ‘synsets’ that make up WordNet indicate roughly
equivalent meanings (synonyms), more specific words (hypernyms) and more general words
(hyponyms) for a given word, as well as ‘parts’ (meronyms) of a larger group (e.g. parts of a body) or
the larger groups to which a certain word belongs (holonyms; e.g. leg > table / body).

At the most basic level, a user can simply submit as a query something like the following:

(6)
QUERY: [=sad]

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

8

http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=weight&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=force%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=luck&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=quantity%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=cliff&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=cliffs%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=coincidence%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=sheer&c4=&w5=enjoyment&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=confusion%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=condemnation%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=devastation%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=disregard%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=helplessness%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=loneliness%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=dejection&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=utter&c4=&w5=ruthlessness%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=majority%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=terms&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=zero&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=minimum&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=value%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=egalitarianism%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=right%20&c5=nn%25
http://view.byu.edu/brtest/r3.asp?w4=absolute&c4=&w5=price%20&c5=nn%25

The script sees the equal sign and interprets this as a query to find all synonyms of sad. The script
then retrieves all of the matching words from WordNet and finds the frequency of each of these words
in the BNC. Users can also limit the hits by part of speech, and can also intervene before seeing the
frequency listing to select just certain synsets (or meanings) from WordNet.

Table 8. WordNet/BNC integration: frequency of synonyms of sad
1 SORRY 10767
2 SAD 3322
3 DISTRESSING 359
4 PITIFUL 199
5 DEPLORABLE 144
6 LAMENTABLE 69

The WordNet data can also be integrated into more advanced queries. A user can – with one simple
query – compare which nouns occur with the different synonyms of a given word. For example, the
following query finds all cases of a noun following a synonym of bad:

 (7)
 QUERY: [=bad] [nn*]

In less than four seconds, the user then sees something similar to the following. (The format on the
web interface is somewhat different to the abbreviated listing shown here).

Table 9. Synonyms of [bad] + NOUN
 PHRASE FREQ PHRASE FREQ
 disgusting thing 16 severe shortage 26
 disgusting way 5 severe weather 43
 distasteful species 5 severe winter 49
 evil empire 10 terrible accident 26
 evil eye 24 terrible blow 13
 evil influence 9 terrible danger 14
 foul language 29 terrible feeling 19
 foul mood 21 terrible mistake 48
 foul play 72 terrible shock 41
 foul temper 14 wicked grin 6
 severe blow 44 wicked people 13
 severe burn 28 wicked thing 27
 severe damage 59 wicked way 14
 severe drought 30 wicked witch 12
 severe illness 23

Such collocational data can be very useful for a language learner, who is probably unsure of
the precise semantic range of each adjective. The type of listing given above, which shows the most
common nouns with each of the adjectives, can easily permit the language learner to make
inferences about the semantic differences between each of the competing adjectives. For example,
s/he would see that severe illness occurs but wicked illness does not, and that terrible mistake is
common, whereas foul mistake is not.

Finally, it is again worth noting that such a query would be extremely difficult with an
architecture that does not allow user access to other databases that can be tied into the main
frequency/n-gram databases. Without our approach, users would likely have to create the list of
synonyms in another program, perhaps run queries with each of these words individually, and then
collate and sort the results in a spreadsheet. In our approach, all of this is done by the web-based
script in less that two seconds.

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

9

http://view.byu.edu/showreg.asp?s=n&w4=sorry&c4=
http://view.byu.edu/r3.asp?s=n&w4=sorry&c4=
http://view.byu.edu/showreg.asp?s=n&w4=sad&c4=
http://view.byu.edu/r3.asp?s=n&w4=sad&c4=
http://view.byu.edu/showreg.asp?s=n&w4=distressing&c4=
http://view.byu.edu/r3.asp?s=n&w4=distressing&c4=
http://view.byu.edu/showreg.asp?s=n&w4=pitiful&c4=
http://view.byu.edu/r3.asp?s=n&w4=pitiful&c4=
http://view.byu.edu/showreg.asp?s=n&w4=deplorable&c4=
http://view.byu.edu/r3.asp?s=n&w4=deplorable&c4=
http://view.byu.edu/showreg.asp?s=n&w4=lamentable&c4=
http://view.byu.edu/r3.asp?s=n&w4=lamentable&c4=
http://128.187.82.234/wn_bnc/x4.asp?w1=qqdisgusting&w2=qqThing&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqshortage&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqdisgusting&w2=qqWay&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqWeather&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqdistasteful&w2=qqspecies&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqWinter&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqevil&w2=qqEmpire&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqAccident&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqevil&w2=qqEye&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqBlow&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqevil&w2=qqinfluence&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqdanger&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqfoul&w2=qqlanguage&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqfeeling&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqfoul&w2=qqMood&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqmistake&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqfoul&w2=qqPlay&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqterrible&w2=qqshock&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqfoul&w2=qqtemper&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqwicked&w2=qqgrin&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqBlow&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqwicked&w2=qqPeople&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqBurn&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqwicked&w2=qqthing&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqdamage&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqwicked&w2=qqway&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqdrought&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqwicked&w2=qqwitch&w3=qq&c1=qqa&c2=qqn&c3=qq
http://128.187.82.234/wn_bnc/x4.asp?w1=qqsevere&w2=qqillness&w3=qq&c1=qqa&c2=qqn&c3=qq

Register-based queries
As was discussed previously, one serious shortcoming of many other approaches is that it is either
difficult or impossible to compare the results of different sub-corpora – for example, different registers
or different historical periods. With the newer BNC/VIEW architecture, however, this is both quite
simple and quite fast.
 Recall that with the ‘sequential n-gram’ architecture, each word in the corpus appears on its
own line in the database:

Table 10. Sequential n-gram table
ID text … word3 pos3 word4 pos4 word5 pos5 …

50891887 EAA … a AT0 small AJ0 group NN1 …

50891888 EAA … small AJ0 group NN1 of PRF …

50891889 EAA … group NN1 of PRF people NN0 …

50891890 EAA … of PRF people NN0 at PRP …

50891891 EAA … people NN0 at PRP work NN1 …

50891892 EAA … at PRP work NN1 , PUN …

50891893 EAA … work NN1 , PUN there EX0 …

50891894 EAA … , PUN there EX0 will VM0 …

50891895 EAA … there EX0 will VM0 be VBI …

50891896 EAA will VM0 be VBI significant AJ0

As shown previously, there is also a small table that contains ‘meta-data’ for each of the 4000+ texts
in the BNC:

Table 11. Text meta information table
text register topics title
EA8 W_commerce leadership; commerce Making it happen…
EA9 W_commerce hotel management; tourism The hotel receptionist…
EAA W_soc_science - Managing people at…
EAJ W_soc_science public law; politics Public law and political...
EAK W_nat_science scientific research Nature. London: Macmillan…

To limit the query to one particular register (or set of registers) or to compare between
registers, the script relies on a SQL JOIN between these two tables. It looks for all rows that match
the n-gram table (Table 10 above), all texts that match the specific register(s) (Table 11 above), and
then limits these hits to just those that have a particular text in common (e.g. EAA above). Examples
of the types of register-based queries might be queries to find which nouns, or verbs, or three word
lexical bundles, or collocates with chair occur more in one register (e.g. FICTION) than in another
(e.g. ACADEMIC).
 For example, suppose that a user wants to find which verbs are more common in legal texts
than in academic texts generally. S/he would simply select the following in the web-based form:

(8)
QUERY: [vvi]
REGISTER 1 [w_ac_polit_law_edu] (from pull-down menu)
REGISTER 2 [ACADEMIC]

This searches for all infinitival lexical verbs (VVI) in law texts (w_ac_polit_law_edu), and then all
infinitival verbs in ACADEMIC texts as a whole, and then compares the two sets of words. The words
– representing verbs that are highly frequent in a legal context – are found in the following table:

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

10

Table 12. Searching by register; lexical verbs in legal texts
WORD/PHRASE TOKENS

REG1
TOKENS
REG2

PER MIL IN REG1
[4,640,346 WORDS]

PER MIL IN REG2
[10,789,236 WORDS]

RATIO

 SUE 331 10 71.33 0.93 76.96
 CERTIFY 27 2 5.82 0.19 31.39
 ADJOURN 26 2 5.60 0.19 30.23
 NOTIFY 38 3 8.19 0.28 29.45
 WAIVE 38 3 8.19 0.28 29.45
 DISCLOSE 190 16 40.95 1.48 27.61
 OVERRULE 23 2 4.96 0.19 26.74
 PROHIBIT 53 5 11.42 0.46 24.65
 PLEAD 62 6 13.36 0.56 24.03

 Again, note that such comparisons would possibly be quite cumbersome for competing
architectures. To the degree that these architectures allow queries by sub-corpora (and not all do),
users could carry out a query for [VVI] in Register 1 and then a subsequent query in Register 2. They
would then copy and paste the results into separate tables in a database, and then carry out cross-
table JOINs to determine the relative frequency in the two registers. Again, however, the process
would probably take at least 3-4 minutes, whereas with our interface it takes only about two seconds.

Expanding collocate searches
The architecture described to this point works well for determining the frequency of words, substrings,
phrases, and ‘slot-based’ searches (e.g. ADJ + world, synonym of [tired] + NOUN, etc). One
fundamental disadvantage of the architecture, however, is that it is limited by its very nature to strings
that occur within a seven word window. This is because that is the number of columns in the
‘sequential n-gram’ table (see Table 5 above). Therefore, if one wanted to find all the nouns that
occur within a wider context of a given adjective, for example, it would not be possible with this
architecture.
 Recently however, we changed the searching algorithm to allow for the recovery of collocates
from much wider context – up to ten words to the left and to the right of a given word. There are
several steps in the script that carries out such queries. Let us take a concrete example to see how
this would work. Assume that we are looking for adjectives that are collocates – ten words to the left
or right – of the word woman. First, the script finds all of the ID values (=word offset values in the
corpus) for woman – more than 22,000 occurrences in the 100 million word corpus – and these are
stored in a temp table. We then find all of the adjectives in the corpus whose ID value is between ten
more and ten less than the ID values in the temp table. These are placed in a second temp table,
and a SQL command then finds the most common words in this table. Overall, the script takes about
5-6 seconds to run, and yields adjectives like young, old, beautiful, married, etc.
 As with the ‘slot-based’ queries (e.g. ADJ + woman) these collocates can then be compared to
the collocates of a competing word, such as man, to determine with collocates are used with woman
much more than with man (e.g. childless, pretty, pregnant, distraught, fragile, desirable), or more with
man than with woman (e.g. honourable, reasonable, military, modest, rational).

Likewise, one can compare collocates across registers, to look for possible polysemy with a
given word. For example, one could look for adjectives with chair that are more common in fiction
than in academic text (e.g. small, hard, rocking, asleep) or which are more common in academic text
than in fiction (e.g. senior, philosophical, established, powerful). Again, this script only takes about
1.5 seconds to produce the list of contrasting collocates.

Conclusion
We hope to have demonstrated two fundamental facts in this paper. First, it is often insightful and
advantageous to look at word frequency in context – by register, in historical terms, in syntagmatic
terms (collocations) and paradigmatic terms (a given word contrasted with competing words that fill
the same slot, such as synonyms). Second, the highly-structured relational databases lend
themselves well to the comparison of contexts. Word frequency, then, can be analysed not just as

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

11

http://view.byu.edu/brtest/r3.asp?s=n&w4=sue&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=certify&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=adjourn&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=notify&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=waive&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=disclose&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=overrule&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=prohibit&c4=
http://view.byu.edu/brtest/r3.asp?s=n&w4=plead&c4=

the overall frequency of a given word or lemma in a certain corpus, but rather as the frequency of
words in a wide range of related contexts.

References
Burnage, G. and D. Dunlop, ‘Encoding the British National Corpus’, in Aarts, J., et al (ed). English
Language Corpora: Design, Analysis and Exploitation. Papers from the 13th International Conference
on English Language Research. (Amsterdam: Rodopi, 1993), 79–95.

Burnard, L., Reference Guide for the British National Corpus: World Edition (Oxford: Oxford
University Computing Services, 2000).

Christ, O., The IMS Corpus Workbench Technical Manual (Stuttgart: Institut fur Maschinelle
Sprachverarbeitung, Universitat Stuttgart, 1994).

Davies, M., ‘The Advantage of Using Relational Databases for Large Corpora: Speed, Advanced
Queries, and Unlimited Annotation’, International Journal of Corpus Linguistics, 10 (2005), 301–28.

Davies, M. ‘Advanced Research on Syntactic and Semantic Change with the Corpus del Español’, in
Pusch, C., et al (eds), Romance Corpus Linguistics II: Corpora and Diachronic Linguistics (Tübingen:
Guntar Naar, 2005), 203–14.

Davies, M. ‘Semantically-Based Queries with a Joint BNC/WordNet Database’, in Facchinetti, R.
(ed), Corpus Linguistics twenty-five years on (Amsterdam: Rodopi, forthcoming).

Fellbaum, C., (ed.), WordNet: An Electronic Lexical Database. (Cambridge, MA: MIT Press, 1998).

Fletcher, W. ‘Exploring Words and Phrases from the British National Corpus’ Phrases in English,
[website], (2005) <http://pie.usna.edu>, accessed June 2006.

Landes S., C. Leacock, and R. Tengi, ‘Building Semantic Concordances’, in Fellbaum, C. (ed),
WordNet: An Electronic Lexical Database (Cambridge, MA: The MIT Press, 1998), 199–216.

Scott, M., WordSmith Tools, Version 4 (Oxford: Oxford University Press, 2004).

AHRC ICT Methods Network, Centre for Computing in the Humanities, Kay House, 7 Arundel Street, London, WC2R 3DX.

12

	WORD FREQUENCY AND KEYWORD EXTRACTION
	Introduction
	A simple n-gram architecture

